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Exact analysis of the Peano basin
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(SISSA), via Beirut 2-4, 34014 Trieste, Italy

Received 21 May 1996

Abstract. The Peano basin is analysed as a deterministic model for river networks. The
fundamental distributions characterizing the real basins morphology can be explicitly calculated.
The recently proposed finite size-scaling ansatz is tested apart from oscillatory amplitudes typical
of deterministic fractals.

1. Introduction

In recent years a variety of approaches towards the statistical characterization of river
networks have been proposed, in the attempt to describe a basin’s morphology [1–6].

In real drainage networks, rainfall collected by the basin flows downhill through
channels, which, by means of erosion, self-organizes in a spatial tree-like structure. Such
networks are known to exhibit power-law behaviour typical of fractal structures [7–9] in
drainage sub-basin areas and mainstream-lengths distributions.

A river basin can be described giving a scalar field of elevations and defining drainage
directions by steepest descents. Thus in a simple lattice picture a river network is represented
by an oriented spanning tree over a two-dimensional lattice. To each sitei one can associate
a local injection of mass (the average annual rainfall at sitei) that can be taken equal to
1. Then the flowAi at site i, or equivalently the drained area at sitei can be defined as
the sum of the injection over all points upstream with respect toi (we say that sitej is
upstream with respect to sitei if drainage directions go fromj to i).

VariablesAi are thus related by:

Ai =
∑
j

wi,jAj + ri (1)

wherewi,j is 1 if site j is a nearest neighbour ofi upstream with respect to sitei and 0
otherwise. In natural basins these areas can be investigated through experimental analysis
of digital elevation maps (DEM’s) [3].

Another relevant quantity in a basin’s morphology is the upstream length relative to a
site, defined as the length of the stream obtained starting from the site and moving in the
upstream direction towards the nearest neighbour with biggest areaA (the one leading to
the outlet excluded), since a source, i.e. a site with no incoming links, is reached. If two
or more equal areas are encountered, one is randomly selected.

Recently a simple finite size-scaling ansatz has been proposed [10] leading to natural
explanation of scaling properties. For a lattice of given linear sizeL call p(A,L) the
probability density distribution of cumulated areasA and π(l, L) the probability density
distribution of the upstream lengthsl, i.e. the fraction of sites with, respectively, areaA or
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stream lengthl. Consider also the integrated distributionsP(A,L), fraction of sites with
cumulated area bigger thenA and5(l, L), and fraction of sites with upstream length bigger
than l. In this notation the finite size-scaling ansatz reads:

p(A,L) = A−τ f
(
A

AC

)
(2)

π(l, L) = l−ψg
(
l

lC

)
(3)

wheref (x) and g(x) are scaling functions taking into account the finite size effect and
aC and lC are characteristic area and length. Functionsf andg are supposed to have the
following properties: whenx → ∞ they go to zero sufficiently fast to ensure normalization;
whenx → 0 they tend to a constant, to give power-law behaviour in the large size limit.

The characteristic area and length are supposed to scale respectively:

AC ∼ Lϕ (4)

lC ∼ Lδ. (5)

For the same quantities, integrated probability distributions can be analogously written:

P(A,L) = A1−τF
(
A

Lϕ

)
(6)

5(l, L) = l1−ψG
(
l

Lδ

)
(7)

which follow from (2) and (3) with

F(x) = xτ−1
∫ +∞

x

dy y−τ f (y) (8)

G(x) = xψ−1
∫ +∞

x

dy y−ψg(y). (9)

In the next section we will work out exactly the distributions with an explicit calculation in
the case of the Peano basin. The scaling ansatz is found to be exact in this case and scaling
exponents are computed. Moreover it will be shown how scaling exponentsτ andψ can
be deduced by renormalization-group arguments. Numerical analysis of above distributions
show the presence of an oscillatory term superimposed to the power laws that will find
natural explanation in terms of renormalization-group analysis.

2. The Peano basin

The Peano basin [7, 11] is a deterministic space-filling fractal with a tree-like structure with
some resemblance with that of real rivers, and is obtained as follows. At step 0 it is an
oriented link. Step 1 is obtained by replacing such link with four new links: two resulting
from the subdivision in half of the old link and preserving its orientation, the other two
having a common extreme in the middle point of the old link and both oriented towards it
(see figure 1). The basin at each successive step, is obtained by iterating the construction,
i.e. replacing each link with four new oriented links in the same way. AfterT steps the
fractal hasNT = 4T points (excluding the outlet) and it can be mapped onto a square lattice
of sizeL = 2T with bonds connecting first and second neighbours to form a spanning tree.

We can associate to each sitei of a T step Peano basin an areaAi(T ) defined as in (1).
Let VT denote the set of distinct values assumed by the variables{Aj } at stepT . This can
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Figure 1. The Peano basin at iteration stepT = 0, T = 1, T = 2, T = 3, with the cumulated
area displayed.

be easily checked by induction,VT containsVT−1 and 2T−1 new distinct values, appearing
for the first time. ThusVT is contained in all 2T distinct numbers. Let us callA .= ⋃∞

T=0 VT
andan the increasing sequence of numbers inA (the distinct values assumed by variables
Aj iterating the construction). For such sequence, we found the following rule:

an = 3

( ∑
k

ck(n)4
k

)
+ 1 n = 0, 1, . . . (10)

where theck(n) are the coefficients of the binary expansion ofn:

n =
∑
k

ck(n)2
k. (11)

Let MT
n be the number of sitesi at stepT whose areaAi assume a given admissible

value an. From the construction shown in figure 2 one can deduce that the following
recursive relation holds:

MT
n = 4MT−1

n − 1 T > t(an)

MT
n = 1 T = t (an)

MT
n = 0 T < t(an)

(12)

wheret (an) denotes thean ‘borning time’, i.e. the first step in which an area with valuean



6704 A Flammini and F Colaiori

Figure 2. With this construction the recursive relation (12) can be easily understood. The Peano
basin at time stepT + 1 is shown in terms of the one at time stepT .

appears. This is easily seen to be given by

t (an) =
{

0 n = 0

1 + [log2(n)] n > 0
(13)

where [ · ] is the integer part.
Solving (12) one gets

MT
n =

{
0 T < t(an)

2
34T−t (an) + 1

3 T > t (an)
(14)

and thus all thean’s ‘born’ at the same time step have the same probability

pT (an)
.= p(an, L = 2T ) = MT

n /NT . (15)

Then the integrated distribution of areasP(Ai > an, L = 2T ) assume a very simple
expression for thean of the form 4t (one can easily check from (10) thata2t−1 = 4t ), and
is given by (6)

P(Ai > a = 4t , L = 2T ) = a1−τF
( a

Lϕ

)
(16)

with

τ = 3
2 ϕ = 2 (17)

and

F(x) = 1
3(1 − x) 0< x < 1 (18)

andF(x) = 0 whenx > 1.
Equation (16) can be obtained observing thatP(Ai > a = 4t , L = 2T ) = ∑2T

n=2t pT (an)

depends onn only throught (an), allowing the replacement of the sum overn with a sum
over the stepss; moreover, for each steps > 0 there are 2s−1 areas with the samet (an) = s,
thus

P(Ai > a = 4t , L = 2T ) =
T∑

s=t+1

( 2
34(T−s) + 1

3)
2s−1

4T

= 1
32−t (1 − 22(t−T )) = 1

3a
− 1

2

(
1 − a

L2

)
(19)



Exact analysis of the Peano basin 6705

which yields (16)–(18). Similarly, choosingl of the form l = 2t and observing that at step
T the sites with upstream length bigger or equal to 2t are the ones in which the cumulative
area exceeds 4t , we easily find:

5(l > 2t , L = 2T ) = l1−ψG
(
l

Lδ

)
(20)

which is of the form (7) with

ψ = 2 δ = 1 (21)

and

G(x) = 1
3(1 − x2). (22)

Scaling exponents for the Peano basin can also be obtained by a renormalization-group
argument. Let us consider for instance the scaling of cumulated areas. The self-similar
structure of the Peano basin suggests a natural ‘decimation’ procedure [12]. The idea is the
following: consider the equations relating areas at time-stepT ; then, eliminate variables
related to sites that are not present at time stepT − 1. This leads to a reduced equation
describing the same physics on a tree scaled down by a factor of 2.

For the sake of simplicity let us consider the Peano basin at the second step of iteration.
In figure 3A(2)n denote the variables related to sites that are present at stepT = 1 andB(2)n
denote the ones that will be eliminated by decimation. The upper label refers to the step.
In what follows it will be useful to write the equations in terms ofÃ(T )n = A(T )n − 1 and
B̃(T )n = B(T )n − 1. The areas at stepT = 2 are related to each other by:

Ã
(2)
1 = 3B̃(2)1 + 3

B̃
(2)
1 = Ã

(2)
0 + 2B̃(2)0 + 3

B̃
(2)
0 = 0.

(23)

Elimination of theB̃(2)n leads to

Ã
(2)
1 = 3Ã(2)0 + 12. (24)

Figure 3. The renormalization group argument for the Peano basin. B-sites die under decimation.
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At time stepT = 1 the relation between areas is straightforward:

Ã
(1)
1 = 3Ã(1)0 + 3. (25)

Equations (24) and (25) are the same if

Ã(T+1)
n = 4Ã(T )n (26)

i.e.

(A(T+1)
n − 1) = 4(A(T )n − 1). (27)

Denoting withn(T+1)(a) the number of sites with area greater thena at stepT + 1,
one can easily observe that the number of decimated sites withA > a is half of the total
number of sites withA > a

n(T+1)(a) = 2n(T )(a/4) (28)

thus, being the total number of sites at stepT , NT = 4T , it follows for the integrated
probabilityP(A(T+1)

n > a) = n(T )(a)

NT
:

P(A(T+1)
n > a) = bP (A(T )n > 3a) (29)

with

3 = 1
4 and b = n(T+1)(a)/4T+1

n(T )(a)/4T
= 2/4T+1

1/4T
= 1

2
. (30)

Equation (29) rewritten in terms ofP(a) = P̃ (loga) as

P̃ (x) = bP̃ (x + λ) (31)

whereλ = log3. The general solution is̃P(x) = exp[(1 − τ)x]w(x), wherew(x) is a
periodic function of period|λ| and exp[(1 − τ)λ] = 31−τ = b−1. Using (30)τ = 3

2; then
the solution of (29) is

P(a) = a1−τw(loga). (32)

Thus an oscillatory term in loga superimposed to the power lawa(1−τ) might exist and
in effect it does. The same argument can be repeated for the distribution of mainstream
lengths, recovering theψ exponent derived in (21).

The possible existence of oscillatory terms was first noted by Nauenberg [13] and has
been discussed by Niemeijer and van Leeuwen in [14]. They report an argument due
to Nelson claiming that oscillatory terms are unlikely to appear because of the fact that
two renormalization transformations with opportunely chosen scales factors would lead to
incommensurate periodsλ1, λ2 and thus to a constantw(x). In our case this argument does
not apply since we can have onlyb = 2k, i.e. λ = − 1

τ−1k log 2.
In figure 4 the log–log plot ofP(a) versusa, as obtained using (15) for the probability

density, is shown for a system of linear sizeL = 214. The broken line is the power law
a(1−τ) times the scaling functionF(a/L2) of (18). In order to highlight the periodicity of the
functionw(x) of (32) in figure 5 we draw a log–log plot ofP(a)a(τ−1) = w(loga)F (a/L2)

versusa. The broken line isF(a/L2). The periodicity is|λ| = log 4. The same plots have
been done for the mainstream length distribution and are shown in figures 6 and 7.

Note that the same renormalization-group argument can be done in generic dimension
d giving τ = 1 + ln d/ ln(2d) andψ = 1 + ln d/[2 ln(2d)].
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Figure 4. Log–log plot of the cumulated areas
distributionP(a) versusa for a system of linear size
L = 214. The broken line isa(1−τ)F (a/L2).

Figure 5. Log–log plot ofP(a)a(τ−1) versusa. The
broken line isF(a/L2) in (18). The periodicity is log 4.

Figure 6. The same as in figure 4 for the mainstream-
lengths distribution.

Figure 7. The same as in figure 5 for the mainstream-
lengths distribution. Note that in this case the period is
|λ| = 1

2 .

3. Conclusions

In this paper we analysed in detail the Peano basin. The scaling behaviour has been worked
out exactly. Similar lattice models for rivers have recently been the object of extensive
studies [15] in which various universality classes have been identified. In particular the
mean-field theory has been solved through a mapping on the Takayasu random aggregation
model [16]. Note that scaling exponents for the Peano basin ind = 2 result are the same
at this mean field.

A remark needs to be made regarding the generalization in dimensiond. One should
expect that in the limitingd → ∞ the exponents tend to the mean-field ones. Actually this
is not the case, in fact one getsτd→∞ = 2, ψd→∞ = 3

2. This is not surprising, and is due
to the fact that in the Takayasu model the tree is space filling only up to dimensiond = 2
[16] while in the Peano basin we impose that by construction in alld.
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